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The energy of the evolved vacuum state is calculated. From a frequency cut-off regu-
larisation the divergent terms are separated and, in the 1 + 1 dimensional case they are
removed with a mass renormalisation of the moving boundary. A renormalisation of
the external force is also needed in 3 + 1 dimensions.
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1. INTRODUCTION

In the preceding paper hereafter referred as I, we have considered the creation
of particles in domains with moving boundaries. In the present paper we study
the energy of the evolved vacuum state. We show that this energy is splinted in
two parts, the energy of the vacuum state that after renormalisation becomes the
standard Casimir energy, and a dynamical part. For times greater than the stopping
time, i.e. when the boundary returns to the initial position, the dynamical part is
the energy of the produced particles, that is, the total radiated energy, which is
finite if the movement of the boundary is smooth enough. On the other hand, when
the boundary moves the dynamical energy has some divergent terms.

To obtain the renormalised dynamical energy, we have used the frequency
cut-off regularisation. The desired result is obtained after a mass renormalisation in
the 1 + 1-dimensional case. In the 3 + 1-dimensional case we have also needed the
renormalisation of the external force that produces the movement of the boundary.
Once we have calculated the dynamical energy, we show that, when the boundary
moves, this quantity is not positive. This proves that, when the boundary is not
at rest, the dynamical energy cannot be considered as the radiated energy in
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agreement with the fact that, in this situation, the concept of particle is ill-defined
(see the discussion below to the formula (25) of I).

Finally we consider a semi-classical model of the interaction between a
moving boundary and the Klein-Gordon field, i.e., a model that describes the
particle creation process due to the movement of the boundary, and that also
takes into account the movement of the boundary induced by the radiation (the
back-reaction).

The paper is organised as follows:
In Section 2 we show that the energy of the evolve vacuum can be splinted in

a static part (the Casimir energy) and a dynamical one (the energy of the created
“quasi-particles”).

In Section 3 we consider the 1 + 1-dimensional case. Firstly, using the fre-
quency cut-off regularisation, we study the energy when there is a single moving
mirror. Once we have calculated the renormalised physical quantities we compare
our results with those obtained by Davis and Fulling in Fulling and Davies (1976).
We also consider bounded cavities, in this case we obtain the main result of the
paper, the renormalised dynamical energy when it exist two mirrors.

In Section 4 we study the 3 + 1-dimensional case. For a single moving mirror
we calculate in a very easy way the renormalised energy of the vacuum state and
the renormalised dynamical energy of the evolved vacuum state that coincides
with the result obtained by Ford and Vilenkin (1982).

Finally in Section 5 we study a semi-classical model of the interaction be-
tween one single moving mirror and the Klein-Gordon field, that includes the
recoil of the mirror.

2. THE CASIMIR ENERGY

Let 〈Êm(t)〉 be the energy of the evolved vacuum state inside a cavity �t .
From the formulae (18) and (19) of I, we have

〈Êm(t)〉 ≡ 〈0|(T t )†Ê(t)T t |0〉 =
∑

n

h

2
ωn(t ; ε)

+
∑

n

hωn(t ; ε)Nm
n (t) + O(ε4). (1)

This formula shows that the energy is splinted in two parts, the energy of the
vacuum at time t that, after renormalisation, gives the usual Casimir energy, and
a dynamical part that corresponds to the energy of the created “quasi-particles” in
the cavity.
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Note that, when t ≥ T , we have

〈Êm(t ≥ T )〉 =
∑

n

h

2
ωn(0) +

∑

n

hωn(0)Nm
n (t ≥ T ) + O(ε4). (2)

That is, when the boundary returns to the initial position, the energy is
decomposed in two parts, the energy of the initial vacuum state and the radiated
energy (the energy of the created particles into the cavity).

Example 2.1. For a rectangular cavity �t = [0, L1 + εg(t)] × [0, L2] × [0, L3]
the formula (1) behaves

〈Êm(t)〉 =
∑

n∈N
3

h

2
ωn(t ; ε)

+ ε2h

2L1
2

(
cπ

L1

)4

×
∑

k,n∈N
3

k2
1n

2
1

∣∣∣
∫ t

0 ġ(τ )ei(ωn(0)+ωk(0))τ dτ

∣∣∣
2

ωn(0)ωk(0)(ωn(0) + ωk(0))
δk2,n2δk3,n3 + O(ε4), (3)

3. 1 + 1-DIMENSIONAL CASE

3.1. A Single Moving Mirror

Here we consider a moving mirror following a prescribed trajectory (εg(t), t).
We denote by 〈Ê0

+,dyn(t)〉 the dynamical energy on the right side of the mirror, and

by 〈Ê0
−,dyn(t)〉 the dynamical energy on the left one.

Until order ε2, the dynamical energy at both sides of the mirror, can be

calculated using the eigenfunctions f±,n(t, x; ε) =
√

2
L∓εg(t) sin(nπ

x−εg(t)
L∓εg(t) ) and

taken L → ∞ or directly using the continuous set of eigenfunctions fω(t, x; ε) =√
2
πc

sin( ω
c

(x − εg(t)). The result is

〈
Ê0

±,dyn(t)
〉 = ε2h

12c2π2

∫ ∞

0
dωω2

∣∣∣∣
∫ t

0
ġ(τ )eiωτ dτ

∣∣∣∣
2

. (4)

The energy of the vacuum at time t , on the left and on the right side, is

〈
Ê0

±,vac(t)
〉 ≡ lim

L→∞

∞∑

n=1

h

2
ω±,n(t ; ε), (5)

where we have introduced the frequencies ω±,n(t ; ε) = nπc
L∓εg(t) .
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Using the frequency cut-off e−ωγ with 0 < γ 
 1, we define the regularised
dynamical energy by

〈
Ê0

±,dyn(t ; γ )
〉 ≡ lim

L→∞

∞∑

n=1

hω±,n(t ; ε)N 0
±,n(t)e−γω±,n(t ;ε). (6)

If we assume that g ∈ C2(R) ∩ C3[0, T ], we obtain the same result as Barton
and Eberlein (1994) (see formula (7.17b) of the Barton and Eberlein (1994) in the
perfect-reflector limit), i.e., under order ε2 then regularised dynamical energy is

〈
Ê0

±,dyn(t ; γ )
〉 = ε2h

12c2π

[
ġ2(t)

πγ
− ..

g (t)ġ(t) +
∫ t

0

..
g2 (τ ) dτ

]
(7)

Thus, to renormalise the total dynamical energy we must impose that the
kinetic energy of the moving boundary is

1

2

(
Mexp − h

3c2π2γ

)
ε2ġ2(t), (8)

where Mexp is the experimental mass of the moving boundary. Then, the renor-

malised dynamical energy, namely 〈Ê0
±,dyn(t)〉, is

〈
Ê

0
±,dyn(t)

〉 ≡ ε2h

12c2π

[
− ..

g (t)ġ(t) +
∫ t

0

..
g2 (τ ) dτ

]
. (9)

Remark 3.1. When t ≥ T we have

〈
Ê

0
±,dyn(t ≥ T )

〉 = 〈
Ê0

±,dyn(t ≥ T )
〉 = ε2h

12c2π

∫ T

0

..
g2 (τ ) dτ > 0, (10)

in agreement with Ford and Vilenkin (1982) and Schützhold et al. (1998).

On the other hand, when t ≤ δ, with 0 < δ 
 1 we have 〈Ê0
±,dyn(t)〉 < 0.

This shows that, when the boundary moves, the dynamical energy cannot be
considered as the radiated energy until time t . (see for details the paragraph below
to the formula (4.5) of Fulling and Davies (1976))

Note that we can write

N 0
±(t ≥ T ) =

∫ ∞

0
N 0

±,ω(t ≥ T ) dω

〈
Ê0

±,dyn(t ≥ T )
〉 =

∫ ∞

0
hωN 0

±,ω(t ≥ T ) dω,
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where, until order ε2,

N 0
±,ω(t ≥ T ) ≡ ε2

π2c2

∫ ∞

0

ωω′

(ω + ω′)2

∣∣∣∣
∫ T

0
ġ(τ )ei(ω+ω′)τ dτ

∣∣∣∣
2

dω′, (11)

is the average density of produced particles per unit of frequency on the right and
on the left side of the mirror. Consequently, 〈Ê0

±,dyn(t ≥ T )〉 is the radiated energy
at both sides, i.e., the energy of the produced particles.

To calculate the energy of the vacuum, we use the same frequency cut-off. It
is not difficult to find

〈
Ê0

±,vac(t ; γ )
〉 ≡ lim

L→∞

∞∑

n=1

h

2
ω±,n(t ; ε)e−ω±,n(t ;ε)γ = lim

L→∞
h

2cπγ 2
(L ∓ εg(t)),

and thus, the energy of the vacuum per unit length, whose value is h
2cπγ 2 , coincides

with the energy density of the Minkowskian vacuum. Consequently, the energy
of the vacuum on the right side (resp. on the left side) can be removed subtract-
ing the energy of the Minkowskian vacuum inside the domain [εg(t),∞) (resp.
(−∞, εg(t)]).

We have also calculated, until order ε, the energy density in both sides of the
mirror. We have found

〈
Ê0

±(t, x; γ )
〉 = h

2cπγ 2
∓ εh

12c2π

(
...
g

(
t ∓ x

c

)
−

..
g (t)

π

2γ

γ 2 + x2

c2

)
. (12)

In a distributional sense, we can write

〈
Ê0

±(t, x; γ )
〉 = h

2cπγ 2
∓ εh

12c2π

(
...
g

(
t ∓ x

c

)
− 2c

..
g (t)δ(x)

)
. (13)

Remark 3.2. Note that, until order ε, we have

∫ ±∞

εg(t)

εh

12c2π

(
...
g

(
t ∓ x

c

)
−

..
g (t)

π

2γ

γ 2 + x2

c2

)
dx = 0,

in agreement with the fact that energy does not contain terms of order ε.
Note also that, from the Appendix B, we can see that the radiation reaction

force is

εh

6c2π

⎛

⎝ ...
g (t) −

..
2 g (t)

πγ

⎞

⎠ .



956 Haro

Finally we compare our results with those obtained by Davis and Fulling in
Fulling and Davies (1976). D-F consider the problem

{
φtt − c2φxx = 0 ∀x > εg(t) ∀t ∈ R

φ(t, εg(t)) = 0 ∀t ∈ R.
(14)

The complete set of in-going positive-frequency solutions of (14) is given by
(see DeWitt, 1975)

φω(t, x) = i√
4hωπ

(
e−iωv − e−iωp(u)

)
, (15)

with v = t + x
c
, u = t − x

c
and p(u) = 2t(u) − u where t(u) is defined by t(u) =

u + 1
c
εg(t(u)).

Remark 3.3. The function p(u) can be expanded in powers of ε in the following
way: From the system

{
p(u) = 2t(u) − u

t(u) = u + 1
c
εg(t(u)),

(16)

inserting the second equation into the first one, we obtain

p(u) = u + 2

c
εg(t(u)) = u + 2

c
εg(u) + O(ε2). (17)

Repeating this process once again we get

p(u) = u + 2

c
εg(u) + 2

c2
ε2g(u)ġ(u) + O(ε3). (18)

In the Heisenberg picture, the quantum field on the right side, has the form

φ̂(t, x) =
∫ ∞

0
dω
[
âin

ω φω(t, x) + (âin
ω

)†
φ∗

ω(t, x)
]
, (19)

thus, using the “point-splitting” ansatz, D-F show that the regularised energy
density on the right side of the mirror is given by

〈Ê0
+(t, x; γ )〉DF = h

2cπγ 2
+ h

12cπ
(p′(u))1/2[(p′(u))−1/2].′′ (20)

Now, to obtain until order ε2 the energy density on the right side, we insert
(18) into (20), and we get

〈Ê0
+(t, x; γ )〉DF = h

2cπγ 2
− ε

h

12c2π

(
...
g (u) + ε

c

....
g (u)g(u) + 2

ε

c

...
g (u)ġ(u)

)
, (21)

where the first term is the energy density of the Minkowskian vacuum.
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The dynamical energy on the right side is obtained integrating 〈Ê0
+(t, x;

γ )〉DF − h
2cπγ 2 between εg(t) and ∞. A simple calculation lead to the following

result

〈Ê0
+,dyn(t ; γ )〉DF = εh

12cπ

[
− ..

g (t) − ε

c

..
g (t)ġ(t) + ε

c

∫ t

0

..
g 2 (τ ) dτ

]
. (22)

Remark 3.4. The energy and the energy density on the left, can be easily calcu-
lated making the change ε → −ε and u → v.

Some comments arise from these results:

(i) The dynamical energy and the dynamical energy density obtained by D-F
taking the set of mode functions (15) and using the regularisation procedure
based in the “point-splitting” ansatz, do not have any divergent term. We
will see that in 3 + 1-dimensional case, some divergent terms appear in the
dynamical energy when a set of mode functions is used. Only in the 1 + 1
case the dynamical energy is free of divergent terms.

(ii) The difference between (7) and (22) (resp. (12) and (21)), is due to the fact
that we have used two different regularisation methods.

(iii) When the boundary returns at rest, (7) and (22) give, of course, the same
result (the radiated energy). And also, if we consider the total renormalised
energy, both methods give the same result.

(iv) The frequency cut-off regularisation can be used in the massive case, (here
there is already a renormalisation prescription (Bordag et al., 2000)). In the
Appendix A we prove that the renormalised dynamical energy in the massive
case (unambiguously calculated) converges to the result obtained in formula
(7). This fact shows the consistency of the frequency cut-off regularisation.

(v) The “point-splitting” ansatz is useful, in practice, when we have a set of mode
functions that satisfies exactly the field equation and only approximately the
boundary conditions. On the other hand, the frequency cut-off regularisation
is a suitable method when we have a perturbative solution of the Schrödinger
equation given by the Hamiltonian (16) of I. This shows the great advantage
of the frequency cut-off prescription because it is very easy in the massless
and in the massive case, to calculate in practice approximate solutions of the
Schrödinger equation. Unfortunately, exact solutions of the field equation can
only be obtained in particular situations.

3.2. Bounded Cavities

In this Section we consider the following 1 + 1-dimensional cavity �t =
[εg(t), L]. For a massless field, the frequency cut-off regularised dynamical energy
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inside the cavity is:

〈
Ê0

in, dyn(t ; γ )
〉 = ε2hπc

12L3

∞∑

n=1

(n2 − 1)

∣∣∣∣
∫ t

0
ġ(τ )ei cπ

L
nτ dτ

∣∣∣∣
2

e−γ cπ
L

n. (23)

To obtain a explicit expression of this energy, we will use the theory of
Fourier’s series (see for a detailed explanation Gasquet and Witomski (1995)).

Let N∗ be the natural number that satisfies 2L
c

N∗ < t ≤ 2L
c

(N∗ + 1). For a
given function f , using the Heaviside’s step function, namely θ , we can write

∫ t

0
f (τ )ei cπ

L
nτ dτ =

√
2L

c

(
N∗−1∑

k=0

c−n

[
f 2L

c
k

]+ c−n

[
(f θt ) 2L

c
N∗
]
)

,

where cn[f 2L
c

k] is the n-Fourier coefficient of the 2L
c

-periodic function f 2L
c

k , defined

in the interval [0, 2L
c

] by f 2L
c

k(τ ) ≡ f (τ + 2L
c

k), and cn[(f θt ) 2L
c

N∗ ] is the n-Fourier

coefficient of the 2L
c

-periodic function (f θt ) 2L
c

N∗ , defined in the interval [0, 2L
c

]

by (f θt ) 2L
c

N∗ (τ ) ≡ f (τ + 2L
c

N∗)θ (t − τ − 2L
c

N∗).

Then using the set of functions en(t) ≡ √
c

2L
ei πnc

L
t and integrating by parts,

we can find

〈
Ê0

in, dyn(t ; γ )
〉 = ε2h

12π2c2

ġ2(t)

γ 2
+ ε2hπc

24L3
g2(t)

+ ε2h

12πc2

∑

n∈Z

∣∣∣∣∣

N∗−1∑

k=0

cn

[
g̈ 2L

c
k

]+ cn

[
(g̈θt ) 2L

c
N∗
]
∣∣∣∣∣

2

− ε2hπ

12L2

∑

n∈Z

∣∣∣∣∣

N∗−1∑

k=0

cn

[
ġ 2L

c
k

]+ cn

[
(ġθt ) 2L

c
N∗
]
∣∣∣∣∣

2

− ε2h

6πc2
ġ(t)

∑

n∈Z

en(t)

(
N∗−1∑

k=0

cn

[
g̈ 2L

c
k

]+ cn

[
(g̈θt ) 2L

c
N∗
]
)

. (24)

Applying the Parseval identity and the Dirichlet theorem (Gasquet and
Witomski, 1995) we can deduce that

〈
Ê0

in, dyn(t ; γ )
〉 = ε2h

12π2c2

ġ2(t)

γ 2
+ ε2hπc

24L3
g2(t)

+ ε2h

6πc2

(
1

2

∫ t

0

..
g 2 (τ ) dτ +

N∗∑

k=1

∫ t

0

..
g

(
τ − 2L

c
k

)
..
g (τ ) dτ

)



Dynamical Casimir Effect for Scalar Fields II (Energy Calculation) 959

− ε2hπ

6L2

(
1

2

∫ t

0
ġ2(τ )dτ +

N∗∑

k=1

∫ t

0
ġ

(
τ − 2L

c
k

)
ġ(τ )dτ

)

− ε2h

6πc2
ġ(t)

(
N∗∑

k=1

..
g

(
t − 2L

c
k

)
+ 1

2
..
g (t)

)
. (25)

Outside �t we obtain the same result as formula (7). Then, the total renor-
malised dynamical energy, denoted by 〈Êtot dyn(t)〉, is

〈Êtot,dyn(t)〉 = ε2hπc

24L3
g2(t) + ε2h

6πc2

N∗∑

k=0

∫ t

0

..
g

(
τ − 2Lk

c

)
..
g (τ ) dτ

−ε2hπ

6L2

(
1

2

∫ t

0
ġ2(τ ) dτ +

N∗∑

k=1

∫ t

0
ġ

(
τ − 2Lk

c

)
ġ(τ )dτ

)

− ε2h

6πc2
ġ(t)

N∗∑

k=0

..
g

(
t − 2L

c
k

)
. (26)

Integrating by parts, (26) becomes

〈Êtot,dyn(t)〉 = −ε

∫ t

0
F1(τ )ġ(τ ) dτ, (27)

with

F1(t) ≡ − εhπc

12L3
g(t) + εh

6πc2

N∗∑

k=0

..
g

(
t − 2Lk

c

)
+ εhπ

6L2

(
1

2
ġ(t) +

N∗∑

k=1

ġ

(
t − 2Lk

c

))
.

(28)

The frequency cut-off regularisation shows that the renormalised total energy
of the vacuum state at time t is

〈Êtot,vac(t)〉 = − 1

24

hπc

L − εg(t)
= − 1

24

hπc

L
− ε

∫ t

0
F2(τ )ġ(τ ) dτ, (29)

where

F2(t) ≡ 1

24

hπc

(L − εg(t))2
= 1

24

hπc

L2
+ 1

12

hπc

L3
εg(t) + O

(
hc

L2
ε2

)
, (30)

and − 1
24

hπc
L

is the Casimir energy of the initial vacuum state.
Then, until order ε2, the total renormalised energy 〈Êtot(t)〉 ≡ 〈Êtot,dyn(t)〉 +

〈Êtot,vac(t)〉, can be splinted in the following way

〈Êtot(t)〉 = − 1

24

hπc

L
− ε

∫ t

0
Ftot(τ )ġ(τ ) dτ. (31)
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The first part is the static Casimir energy of the initial vacuum state, and the
second part is minus the work done, until time t , by the reaction force

Ftot(t) ≡ 1

24

hπc

L2
+ hε

6πc2

N∗∑

k=0

...
g

(
t − 2Lk

c

)

+ εhπ

6L2

(
1

2
ġ(t) +

N∗∑

k=1

ġ

(
τ − 2Lk

c

))
. (32)

Finally note that, in our situation (only one moving boundary), the term of
order ε in (32) coincides with the formula (2) of the Jaekel and Reynaud (1993).

4. 3 + 1-DIMENSIONAL CASE

4.1. A Single Moving Mirror

We consider the massless Klein-Gordon field into the domains

�+
t = [εg(t), L1] × [−L2, L2] × [−L3, L3];

�−
t = [−L1, εg(t)] × [−L2, L2] × [−L3, L3],

with L1, L2, L3 � 1, and we take the following set of eigenfunctions

f±,n(t, x; ε) ≡
√

2

L1 ∓ εg(t)
sin

(
n1π

x1 − εg(t)

L1 ∓ εg(t)

)

× 1√
2L2

e
i

πn2x2
L2

1√
2L3

e
i

πn3x3
L3 , (33)

with n1 ∈ N and n2, n3 ∈ Z. Then, until order ε2 the dynamical energy is

〈
Ê0

±,dyn(t)
〉 = ε2hL2L3

2(πc)4

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3

∫ ∞

0

×
∫ ∞

0

ω2
1(ω′

1)2dω1dω′
1

ωω′(ω + ω′)

∣∣∣∣
∫ t

0
ġ(τ )ei(ω+ω′)τ dτ

∣∣∣∣
2

, (34)

where

ω±,n(t ; ε) =
√(

πcn1

L1 ∓ εg(t)

)2

+
(

πcn2

L2

)2

+
(

πcn3

L3

)2

ω =
√

ω2
1 + ω2

2 + ω2
3, ω′ =

√
(ω′

1)2 + ω2
2 + ω2

3.
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Making the change of variables
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω1 = usin α′ cos α(sin α + sin α′)−1

ω′
1 = usin α cos α′(sin α + sin α′)−1

ω2 = usin α sin α′(sin α + sin α′)−1 cos β

ω3 = usin α sin α′(sin α + sin α′)−1 sin β,

(35)

we get

〈
Ê0

±,dyn(t)
〉 = ε2hL2L3

2(πc)4
R
∫ ∞

0
duu4

∣∣∣∣
∫ t

0
ġ(τ )eiuτ dτ

∣∣∣∣
2

, (36)

where a maple calculation provides

R ≡ 2π

∫ π
2

0

∫ π
2

0

sin3 α sin3 α′ cos2 α cos2 α′

(sin α + sin α′)6
dα dα′ = π

90
.

If we assume that g ∈ C4(R) ∩ C5[0, T ], the frequency cut-off regularised
dynamical energy is given by

〈
Ê0

±,dyn(t ; γ )
〉 = ε2hL2L3

90π3c4

[
ġ2(t)

γ 3
− 1

γ

(
...
g (t)ġ(t) − 1

2
..
g2 (t)

)

+ π

2

(
....
g (t)ġ(t) − ...

g (t)
..
g (t) +

∫ t

0

...
g 2 (τ ) dτ

)]
. (37)

To renormalise this quantity we follow the same method as Gütig and Eberlein
(1998) (see for more details the explanation of the formula (5.17) of Gütig and
Eberlein (1998)). We suppose that the external density force that produces the
movement of the wall has the form

Fext(t) = ρ1ε
..
g (t) + ρ2ε

....
g (t), (38)

and we propose that

ρ1 ≡ ρexp − h

90π3c4γ 3
; ρ2 ≡ h

180π3c4γ
, (39)

where ρexp is the experimental mass density of the moving wall. Thus, since the
work done by the external density force is 4εL1L2

∫ t

0 dτFext(τ )ġ(τ ), the divergent
terms of (37) are cancelled, and we can define the renormalised dynamical energy
per unit of area by

0
±,dyn(t) ≡ ε2h

720π2c4

(
....
g (t)ġ(t) − ...

g (t)
..
g (t) +

∫ t

0

...
g 2 (τ ) dτ

)
. (40)
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Remark 4.1. When t ≥ T , the radiated energy per unit of area is

0
±,dyn(t ≥ T ) = ε2h

720π2c4

∫ T

0

...
g 2 (τ )dτ, (41)

in agreement with Ford and Vilenkin (1982).
In this case the regularised energy of the vacuum at time t is

〈
Ê0

±,vac(t ; γ )
〉 ≡ lim

L1,L2,L3→∞

∑

n1 ∈ N

n2, n3 ∈ Z

h

2
ω±,n(t ; ε)e−γω±,n(t ;ε)

= lim
L1,L2,L3→∞

6h

π2c3γ 4
(L1 ∓ εg(t))L2L3, (42)

and we can conclude that the energy of the vacuum per unit volume, whose value
is 3 h

2π2c3γ 4 , coincides with the energy density of the Minkowskian vacuum.
To finish this Section we review the results obtained by Ford and Vilenkin

(1982). Using Green’s functions the authors construct solutions that satisfy exactly
the wave equation and, until order ε, the Dirichlet boundary condition.

With these solutions, applying the “point-splitting” ansatz, the authors cal-
culate the regularised reaction force on the mirror per unit area (Eq. (4.12) of the
Ford and Vilenkin (1982))

F (t ; a) = εh

24π2

(
1

a3c

..
g (t) − 1

10ac3

....
g (t) − 1

15c4
g(5)(t)

)
, (43)

where 0 < a 
 1 is a cut-off with dimensions of length.
Then, the total regularised dynamical energy per unit area is minus the work

done by F (t ; a), that is,

0
tot, dyn(t ; a)FV ≡ −ε

∫ t

0
F (τ ; a)ġ(τ ) dτ

= − ε2h

48π2a3c
ġ2(t) + ε2h

240π2ac3

(
...
g (t)ġ(t) − 1

2
..
g 2 (t)

)

+ ε2h

360π2c4

(
....
g (t)ġ(t) − ...

g (t)
..
g (t) +

∫ t

0

...
g 2 (τ ) dτ

)
. (44)

Therefore, the total renormalised dynamical energy per unit area is defined
by

0
tot, dyn(t)FV ≡ ε2h

360π2c4

(
....
g (t)ġ(t) − ...

g (t)
..
g (t) +

∫ t

0

...
g 2 (τ ) dτ

)
, (45)
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that coincides with 0
+,dyn(t) + 0

−,dyn(t). Note that, the difference between (44)

and 1
4L2L3

(〈Ê0
+,dyn(t ; γ )〉 + 〈Ê0

−,dyn(t ; γ )〉) is due to the two different approaches
used to obtain these quantities.

4.2. Two Mirrors

We study the massless Klein-Gordon field inside and outside of the domain
�t = [εg(t), L1] × [−L2, L2] × [−L3, L3] with L2, L3 � 1. The regularised dy-
namical energy inside is

〈
Ê0

in, dyn(t ; γ )
〉
≡ ε2hL2L3π

3c2

L6
1

∞∑

n,k=1

∫ ∞

0

duu

∣∣∣kn
∫ t

0 ġ(τ )ei(ωn(u)+ωk (u))(τ+i
γ
2 )dτ

∣∣∣
2

ωn(u)ωk(u)(ωn(u) + ωk(u))
, (46)

with ωn(u) =
√

π2c2n2

L2
1

+ u2. And the regularised dynamical energy outside is given

by the formula (37).
From the Abel-Plana formula (see the formula (2.31) of the Mostepanenko,

and Trunov (1997)), we can show that the divergent part of 〈Ê0
in, dyn(t ; γ )〉, namely

〈Ê0
D,in, dyn(t ; γ )〉, is given by

〈
Ê0

D,in, dyn(t ; γ )
〉 = ε2hL2L3

90π3c4

[
ġ2(t)

γ 3
− 1

γ

(
...
g (t)ġ(t) − 1

2
..
g 2 (t)

)]
, (47)

that is, the total divergent dynamical energy of the system coincides with the total
divergent dynamical energy when only it exist a single mirror. Consequently, this
divergent quantity is removed assuming that the external density force is given by
(38) and (39).

To calculate the energy of the vacuum at time t inside �t , we make use of
the following version to the Euler-Mclaurin formula

∞∑

n=1

F (n) =
∫ x

0
dxF (x) − 1

2
F (0) + 2

∞∑

n=0

(−1)n+1

(2π )2n+2
F (2n+1)(0)ζR(2n + 2),

(48)

that can be easily deduced from the Abel-Plana formula.
From (48), it is not difficult to prove that

〈
Ê0

in,vac(t ; γ )
〉 = 6(L1 − εg(t))L2L3h

π2c3γ 4
− L2L3h

πc2γ 3
− L2L3hπ2c

360(L1 − εg(t))3
. (49)
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Thus, we conclude that the total renormalised energy of the vacuum at time
t per unit area, denoted by vac(t), is

vac(t) ≡ − hπ2c

1440(L1 − εg(t))3
. (50)

5. THE BACK-REACTION PROBLEM

In this Section we consider the model that describes the interaction between
a single moving mirror in the two dimensional space-time and the massless Klein-
Gordon field.

Let lε(t) be the trajectory of the mirror. The Lagrangian of the field on the
right and on the left side of the mirror, obtained from the Eqs. (4) and (7) of I, is
given by (see Schützhold et al., 1998)

L±,F (t) = 1

2

∞∑

n=1

(
Q̇2

±,n − ω2
±n(t ; ε)Q2

±,n

)+
∞∑

n,k=1

Q±,nM±,nk(t ; ε)Q̇±,k

+ 1

2

∞∑

n,k,r=1

Q±,nM±,nr (t ; ε)M±,kr (t ; ε)Q±,k, (51)

where in this case the frequencies are ω±,n(t ; ε) = πcn
L∓lε (t) with L � 1, and

M±,nk(t ; ε) =
⎧
⎨

⎩

∓ l̇ε (t)
L∓lε (t)

2nk
k2−n2 n �= k

0 n = k.

The Lagrangian that describes the movement of the boundary is

LB(t) = M

2
l̇2
ε − W (lε, t), (52)

where W is the prescribed potential energy function, and M is the mass of the
boundary.

The Lagrangian LT ≡ L+,F + L−,F + LB describes completely the interac-
tion between the field and the mirror. Then the corresponding Euler-Lagrange
equations give the coupled system

Q̈±,n = −ω2
±,n(t ; ε)Q±,n + 2

∞∑

k=1

M±,nk(t ; ε)Q̇±,k

+
∞∑

k=1

Ṁ±,nk(t ; ε)Q±,k +
∞∑

k,r=1

M±,nr (t ; ε)M±,kr (t ; ε)Q±,k. (53)
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Ml̈ε = −∂xW (lε, t) + Fmech, (54)

where Fmech is the classical reaction force, and its value is (see Appendix B)

Fmech = lim
δ→0

[
E0(t, lε(t) − |δ|) − E0(t, lε(t) + |δ|)]

= − 1

L − lε

∞∑

n,k=1

ω+,n(t ; ε)ω+,k(t ; ε)Q+,nQ+,k

+ 1

L + lε

∞∑

n,k=1

ω−,n(t ; ε)ω−,k(t ; ε)Q−,nQ−,k, (55)

where E0 is the energy density of the massless Klein-Gordon field (Eq. (6) of I).
The conjugated momenta are

P±,n ≡ ∂LT

∂Q̇±,n

= Q̇±,n −
∞∑

k=1

M±,nk(t ; ε)Q±,k (56)

pε ≡ ∂LT

∂l̇ε
= Ml̇ε − 1

l̇ε

∞∑

n,k=1

(
M+,nk(t ; ε)P+,nQ+,k + M−,nk(t ; ε)P−,nQ−,k

)
,

(57)

and the full Hamiltonian is

HT (t) ≡ M

2
l̇2
ε + W (lε, t) + E+,F + E−,F , (58)

where E+,F (resp. E−,F ) is the energy of the field on the right (resp. on the left)
of the mirror.

The expression (58) can be written as follows

HT (t) = 1

2M

(
pε +

∞∑

n,k=1

gnk

(
P−,nQ−,k

L + lε
− P+,nQ+,k

L − lε

))2

+ W (lε, t)

+ 1

2

∞∑

n=1

(
P 2

+,n + ω2
+,n(t ; ε)Q2

+,n

)+ 1

2

∞∑

n=1

(
P 2

−,n + ω2
−,n(t ; ε)Q2

−,n

)
,

(59)

where we have introduced

gnk =
⎧
⎨

⎩

2nk
k2−n2 n �= k

0 n = k.
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The quantum Hamiltonian, denoted by ĤT (t), is obtained following the well-
known canonical quantisation procedure. Then the Schrödiger equation

{
ih∂t |�〉t = ĤT (t)|�〉t
|�〉0 = |0T 〉, (60)

describes the interaction between the field and the mirror, where |0T 〉 is the vacuum
state of the full system.

Remark 5.1. In Law (1995) the author obtains the quantum equation, that de-
scribes the back-reaction, inside a bounded 1 + 1-dimensional cavity. It is clear,
from our analysis, that the field outside the cavity must be included in the full
quantum equation.

We believe that the study of the quantum Eq. (60) is very complicated. For
this reason we consider the following semi-classical model that describes the
back-reaction:

We only quantise the dynamical variables of the field, and we assume that
the dynamical variable lε satisfies the equation

Ml̈ε = −∂xW (lε, t) + 〈Fmech(t ; γ )〉, (61)

where

〈Fmech(t ; γ )〉 = 〈Ê0
−(t, lε ; γ )〉 − 〈Ê0

+(t, lε ; γ )〉 (62)

is the frequency cut-off regularised reaction force produced by the evolved vacuum
state (see Appendix B).

Remark 5.2. It is important to emphasise the fact that the Eq. (62) must be under-
stood as the second Newton’s law, and then we can replace the force −∂xW (lε, t)
by a more general classical external force (dissipative force, friction force, . . .).
Obviously, we cannot make this substitution in Eq. (60), because this equation
comes from a Hamiltonian system.

The linear term on lε of the cut-off frequency regularised reaction force is
obtained inserting (12) into (62), then the Eq. (61) becomes

Ml̈ε = −∂xW (lε, t) + h

6c2π

(
l̈ε(t) − 2

πγ
l̈ε(t)

)
. (63)

After the mass renormalisation M = Mexp − h
3c2π2γ

(Eq. (8)), we obtain the
equation

Mexp l̈ε = −∂xW (lε, t) + h

6c2π
l̈ε(t). (64)
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Note that the reaction force that appears in (64) must be understood as a
small perturbation, because this force is obtained assuming that lε is a prescribed
trajectory that satisfies the equation Mexp l̈ε = −∂xW (lε, t), and clearly do not
play the same role as the external forces. Note also that with this interpretation the
runaway solutions are eliminated.

Effectively, if we write lε = εg + x̃, where εg is the solution of the Newton’s
equation ε

..
g = −∂xW (εg, t), and x̃ is the induced movement of the boundary

due to the evolved vacuum state. Since, |̃x| must be smaller than ε|g|, making the
approximation ∂xW (lε, t) ≈ ∂xW (εg, t) the Eq. (64) behaves

Mexp ¨̃x ≈ hε

6c2π

...
g (t), (65)

and we deduce that the trajectory of the mirror is

lε(t) ≈ εg(t) + hε

6Mexpc2π
ġ(t). (66)

Finally inserting this expression in (10), we conclude that the total radiated
energy, until order ε2, in this approximation is

hε2

6c2π

∫ T

0

(
..
g 2 (τ ) + h2

36M2
expc

4π2

...
g 2 (τ )

)
dτ. (67)

6. CONCLUSIONS

In these two papers we have showed that the dynamical Casimir effect in
cavities with perfect reflecting boundaries presents several difficulties: The con-
cept of particle is ill-defined when the boundary moves, a divergent production
of particles is possible when the movement of the boundary has some type of
discontinuities, and the renormalised dynamical energy is not positive when the
boundary moves.

We have also showed that, from the Hamiltonian approach, the regularised
Casimir energy can be calculated in a very easy way. In particular, in the 1 + 1-
dimensional case, we have calculated explicitly the energy when there is two
boundaries.

Finally in the last Section we have calculated the radiation energy emitted by
a mirror when their recoil is taken into account.

APPENDIX A

Here we consider the massive Klein-Gordon in two dimensions, and we
assume that the field vanish in a prescribed trajectory (t, εg(t)).
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Until order ε2 we have

〈
Êm

±,dyn(t)
〉 = ε2

2π2c2h5

∫ ∞

0

∫ ∞

0

x2y2
∣∣∣
∫ t

0 ġ(τ )ei(ω(x)+ω(y))τ dτ

∣∣∣
2

ω(x)ω(y)(ω(x) + ω(y))
dx dy, (68)

where ω(x) = 1
h

√
x2 + m2c4.

The part of the energy that contains the divergent terms is

〈
Êm

D,±,dyn(t)
〉 ≡ ε2ġ2(t)

2π2c2h5

∫ ∞

0

∫ ∞

0

x2y2

ω(x)ω(y)(ω(x) + ω(y))3
dx dy. (69)

Now we define

〈
Êm

D,±,dyn(t ; γ )
〉 ≡ ε2ġ2(t)

2π2c2h5

∫ ∞

0

∫ ∞

0

x2y2e−(ω(x)+ω(y))γ

ω(x)ω(y)(ω(x) + ω(y))3
dx dy. (70)

Making the change of variables

u = 1

m2c4

√
x2 + m2c4; v = 1

m2c4

√
y2 + m2c4,

we obtain

〈
Êm

D,±,dyn(t ; γ )
〉 = ε2ġ2(t)m

2π2

∫ ∞

1

∫ ∞

1

√
u2 − 1

√
v2 − 1e− mc2

h- γ (u+v)

(u + v)3
du dv

= ε2ġ2(t)m

2π2

∫ ∞

1

∫ ∞

1

uve− mc2

h- γ (u+v)

(u + v)3
du dv

+ ε2ġ2(t)m

2π2

∫ ∞

1

∫ ∞

1

(
√

u2 − 1
√

v2 − 1 − uv)e− mc2

h- γ (u+v)

(u + v)3

× du dv ≡ (A) + (B). (71)

Since

∣∣∣∣∣
(
√

u2 − 1
√

v2 − 1 − uv)

(u + v)3

∣∣∣∣∣ ≤ 2

u
3
2 v

3
2

,

from the Lebesgue’s Dominated Convergence Theorem we deduce that

lim
γ→0

(B) = ε2ġ2(t)m

2π2

∫ ∞

1

∫ ∞

1

(
√

u2 − 1
√

v2 − 1 − uv)

(u + v)3
du dv = O(mc2).

(72)
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Now we study the integral
∫∞

1

∫∞
1

uve
− mc2

h
γ (u+v)

(u+v)3 du dv. Making the change
ū = γ u and v̄ = γ v we can write

∫ ∞

1

∫ ∞

1

uve− mc2

h- γ (u+v)

(u + v)3
du dv = 1

γ

∫ ∞

0

∫ ∞

0

ūv̄e− mc2

h- (ū+v̄)

(ū + v̄)3
dū dv̄

− 1

γ

∫ γ

0

∫ γ

0

ūv̄e− mc2

h- (ū+v̄)

(ū + v̄)3
dū dv̄

− 2

γ

∫ γ

0
dv̄

∫ ∞

γ

dū
ūv̄e− mc2

h- (ū+v̄)

(ū + v̄)3

= 1

6γ

h

mc2
− 5

4
+ O

(
mc2

h
γ

)
. (73)

Consequently, we have

〈
Êm

D,±,dyn(t ; γ )
〉 = ε2ġ2(t)h

12π2c2γ
+ O

(
mc2

h
γ

)
+ O(mc2). (74)

Now we write 〈Êm
±,dyn(t ; γ )〉 = 〈Êm

D,±,dyn(t ; γ )〉 + 〈Êm

±,dyn(t ; γ )〉. An easy
calculation shows that

lim
m→∞ lim

γ→0

〈
Ê

m

±,dyn(t ; γ )
〉 = 0.

However, the convergent part of 〈Êm
D,±,dyn(t ; γ )〉, that is,O(mc2

h
γ ) + O(mc2),

diverges when γ → 0 and m → ∞. For this reason, if we impose that the
renormalised part of 〈Êm

±,dyn(t)〉, namely 〈Êm

±,dyn(t)〉, satisfies the condition

limm→∞〈Êm

±,dyn(t)〉 = 0, we must define
〈
Ê

m

±,dyn(t)
〉 ≡ lim

γ→0

(〈
Êm

±,dyn(t ; γ )
〉− 〈Êm

D,±,dyn(t ; γ )
〉)
. (75)

Now, it is not difficult to prove that

lim
m→0

〈
Ê

m

±,dyn(t)
〉 = 〈

Ê
0
±,dyn(t)

〉
. (76)

This shows the consistency of the frequency cut-off regularisation, in the
massless case.

APPENDIX B

In this Appendix we calculate the force that acts on a moving boundary due
to the massless Klein-Gordon field (the reaction force).



970 Haro

In 1 + 1-dimensions the stress tensor of the field is
(

E 1
c
F

1
c
F E

)
, (77)

where E is the energy density of the system (Eq. (6) of I), and F ≡ −h2c2∂tφ∂xφ

is the energy flux.
The momentum of the field is P ≡ 1

c2

∫
R

dxF . Then, if �Pmech is the mo-
mentum increment of the moving boundary due to the interaction with the Klein-
Gordon field, the momentum conservation law provides

∂t (P + �Pmech) = 0,

consequently the classical reaction force Fmech ≡ ∂t (�Pmech) is given by

Fmech = − 1

c2
∂t

∫

R

dxF = h2∂t

∫

R

dx∂tφ∂xφ = ∂t

∫

R

dxξ∂xφ, (78)

where we have used the canonically conjugated momentum of the field (Eq. (5)
of I).

In the particular case of a single moving mirror with trajectory (t, q(t)) we
easily find

Fmech(t) = lim
δ→0

[
E0(t, q(t) − |δ|) − E0(t, q(t) + |δ|)] , (79)

where E0 is the energy density of the massless Klein-Gordon field (see Eq. (6)
of I).

Finally note that the reaction force produced by the evolved vacuum state
(the so-called radiation reaction force) is

〈Fmech〉 ≡ ∂t

∫

R

dx〈0|(T t )†ξ̂ ∂xφ̂T t |0〉. (80)

In the case of a single moving mirror, the frequency cut-off regularised
reaction force is given by

〈Fmech(t ; γ )〉 = 〈Ê0
−(t, lε ; γ )〉 − 〈Ê0

+(t, lε ; γ )〉, w (81)

where 〈Ê0
±(t, lε ; γ )〉 is the regularised energy density in both sides of the mirror

(see Eq. (12)).
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